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and Exposure
David M. Umbach and Clarice R. Weinberg
Biostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC

Summary

Most noninfectious disease is caused by low-penetrance
alleles interacting with other genes and environmental
factors. Consider the simple setting where a diallelic au-
tosomal candidate gene and a binary exposure together
affect disease susceptibility. Suppose that one has geno-
typed affected probands and their parents and has de-
termined each proband’s exposure status. One proposed
method for assessment of etiologic interaction of ge-
notype and exposure, an extension of the transmission/
disequilibrium test, tests for differences in transmission
of the variant allele from heterozygous parents to ex-
posed versus unexposed probands. We show that this
test is not generally valid. An alternative approach com-
pares the conditional genotype distribution of unex-
posed cases, given parental genotypes, versus that of
exposed cases. This approach provides maximum-like-
lihood estimators for genetic relative-risk parameters
and genotype-exposure–interaction parameters, as well
as a likelihood-ratio test (LRT) of the no-interaction null
hypothesis. We show how to apply this approach, using
log-linear models. When a genotype-exposure associa-
tion arises solely through incomplete mixing of subpop-
ulations that differ in both exposure prevalence and al-
lele frequency, the LRT remains valid. The LRT becomes
invalid, however, if offspring genotypes do not follow
Mendelian proportions in each parental mating type—
for example, because of genotypic differences in sur-
vival—or if a genotype-exposure association reflects an
influence of genotype on propensity for exposure—for
example, through behavioral mechanisms. Because the
needed assumptions likely hold in many situations, the
likelihood-based approach should be broadly applicable
for diseases in which probands commonly have living
parents.

Received July 19, 1999; accepted September 8, 1999; electronically
published January 6, 2000.

Address for reprints and correspondence: Dr. David M. Umbach,
MD A3-03, NIEHS, P.O. Box 12233, Research Triangle Park, NC
27709-2233. E-mail: umbach@niehs.nih.gov

� 2000 by The American Society of Human Genetics. All rights reserved.
0002-9297/2000/6601-0027$02.00

Introduction

Many diseases are neither purely genetic nor purely en-
vironmental but arise through the joint action of genetic
susceptibilities and environmental factors. In the study
of such diseases, a natural goal is to understand how
genetic makeup and exposure history work together to
influence susceptibility. Toward that end, interest often
focuses on possible synergism—that is, on assessment of
whether the effect of genotype on risk changes with ex-
posure level or, equivalently, whether the effect of ex-
posure on risk changes with genotype.

Whether synergism exists can depend on how effects
are measured. What qualifies as synergism when effects
are assessed, for example, as differences in penetrances
may fail to qualify when effects are measured as ratios
of penetrances. Thus, when an environmental agent has
some effect on risk for every genotype, the measurement
scale can govern whether the magnitude of that effect
differs among genotypes. Proposed methods for evalu-
ation of genotype-exposure interaction start from a basic
model in which the focus is on the relative risk of disease
(i.e., the ratio of penetrances) for those with versus those
without a particular genotype. Under such models, in-
teraction with exposure is assessed by determining
whether the genotype relative risks vary across levels of
the exposure. We adopt this statistical definition of in-
teraction, recognizing that it need not correspond to bio-
logical interaction (Greenland and Rothman 1998).

For the study of genetic effects, designs based on the
genotyping of affected individuals and their parents are
highly informative and offer robustness against spurious
conclusions induced by hidden genetic structure, such as
stratification or admixture. Linkage disequilibrium can
be detected by studying heterozygous parents and com-
paring their rate of transmission of the variant allele with
the null value .5, by use of the transmission/disequilib-
rium test (TDT [Spielman et al. 1993; Spielman and
Ewens 1996]). Alternatively, one can compare the ge-
notype distribution of cases versus that expected given
their parents’ genotypes, by using likelihood-based tests
(Self et al. 1991; Schaid and Sommer 1993; Weinberg
et al. 1998) or other tests (Flanders and Khoury 1996).
Log-linear modeling allows implementation of such like-
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lihood-based analyses of case-parent data and can be
extended to examine prenatal effects of maternal ge-
notype and imprinting effects, in addition to effects of
inherited genotype on risk (Weinberg et al. 1998; Wilcox
et al. 1998; Weinberg 1999b). In addition, data from
incomplete triads can be incorporated efficiently (Wein-
berg 1999a). All these methods share robustness against
population structure. They all rely on a key, but often
reasonable, assumption that transmission of alleles from
parents to offspring follows Mendelian probabilities and
that, for each parental mating type, the Mendelian ge-
notype proportions persist among offspring until the
ages at which the probands are studied.

Case-parent designs are also useful for studying the
joint effects of candidate genes and exposures. Various
authors have proposed examination of genotype-expo-
sure interaction by the grouping of case-parent triads
according to the exposure status of the case and testing
for differences between exposed and unexposed groups.
These proposals fall into two types: some, extending the
TDT, have used as the basis of comparison the rates of
transmission of the variant allele from heterozygous par-
ents to affected offspring (Harley et al. 1995; Maestri
et al. 1997; Schaid 1999a); others have used the geno-
type distribution of cases, given their parents’ genotypes
(Khoury 1994; Khoury and Flanders 1996; Schaid
1999a; Witte et al. 1999). Recently, Schaid (1999a) stud-
ied the power of both types of methods for testing for
genotype-exposure interaction in populations without
hidden genetic structure.

The purpose of this paper is threefold. First, we show
that tests for genotype-exposure interaction that are
based on comparison of allelic transmission rates are
not generally valid. Second, we describe log-linear mod-
els for studying the joint effects of genetics and exposure
on risk. For simplicity, we restrict attention to a di-
chotomous disease trait in relation to a diallelic auto-
somal candidate gene and a two-level exposure. This log-
linear approach is valid for assessing the genotype effects
and gene-exposure–interaction effects under certain as-
sumptions about the population under study. Exposure
effects cannot usually be estimated with case-parent
data. Third, we point out some potential pitfalls in the
interpretation of evidence that favors gene-environment
interaction and that arises from case-parent designs, and
we examine whether tests of fit are helpful in the detec-
tion of violations of assumptions.

Notation

Consider a diallelic autosomal candidate gene with
one allele designated as the variant allele. Let M, P, and
C denote the number of copies of the variant allele car-
ried by the mother, father, and child, respectively, each
of which can take values 0, 1, or 2. Let E denote ex-

posure status, which, for simplicity, we take to have two
levels, with values 0 or 1 for triads in which the case is
unexposed or exposed, respectively. We assume sym-
metry of mating, so that, for example, has(M,P) = (1,2)
the same probability of occurring in the population as
does . Under this assumption, and ignoring(M,P) = (2,1)
possible maternal or imprinting effects on risk, we can
treat symmetric pairs such as these as a single joint pa-
rental genotype. This pairing gives 6 distinct parental
mating types, 3 of which are informative, and 10 distinct
categories of (M,P,C), 7 of which are informative (Schaid
and Sommer 1993). With a binary exposure, the triads
under study can be partitioned into 20 distinct categories
(14 informative) based on M, P, C, and E.

Let t be the transmission rate (the probability that a
heterozygous parent transmitted the variant allele, given
that the offspring became affected); we use tE and tU

when distinguishing between exposed and unexposed
offspring, respectively. Let Rc ( or 2) be the relativec = 1
risk of disease for a person with c copies of the variant
allele, compared with a person with no copies; we use
REc and RUc when distinguishing between exposed and
unexposed persons, respectively. The term “transition
ratio” will denote a ratio of conditional probabilities

, where c* denotes the few-∗P(C = cFM,P)/P(C = c FM,P)
est copies of the variant allele that are possible for an
offspring from the given parental-mating type.

Transmission-Based Approach

One straightforward approach for assessment of in-
teraction, a natural extension of the TDT, looks for dif-
ferences in transmission rates from heterozygous parents
to exposed versus unexposed probands. The method
construes the equal-transmission-rate null hypothesis

as an appropriate no-interaction null (SchaidH : t = t0 E U

1999a) and tests it by using either the usual x2 test for
comparing the two proportions or Fisher’s exact test. A
related transmission-based conditional logistic-regres-
sion procedure has been used by Maestri et al. (1997)
and was originally proposed by Harley et al. (1995) in
a somewhat different context. Two problems invalidate
these approaches—that is, make their type I error rates
depart from nominal values.

First, when the variant allele affects risk, transmission
rates can differ between exposed and unexposed triads
even if exposure has no effect at all on risk, either alone
or in concert with the variant allele. In other words,
the correct no-interaction null hypothesis—namely,

for and 2—is not equivalent to theH : R = R c = 10 Ec Uc

equal-transmission-rate null hypothesis actually being
tested—namely, . This nonequivalence arisesH : t = t0 E U

from a particular kind of hidden population structure.
Ignoring exposure for the moment, one finds that the
transmission rate from a heterozygous parent depends



Umbach and Weinberg: Testing of Gene-Environment Interaction 253

Table 1

Rate of Transmission of Variant Allele from Heterozygous Parents, as a Weighted Average of Mating-Type–Specific
Transmission Rates across Informative Mating Types

Informative Parental
Mating Type

Proportion of
Parents (of Cases) with

Given Mating Typea

Proportion of Heterozygous
Parents (of Cases) with

Given Mating Type
Mating-Type–Specific

Transmission Rate

(1,2) p12 p12 = w12p �2p �p12 11 01

R2

R �R1 2

(1,1) p11 2p11 = w11p �2p �p12 11 01

R �R2 1

R �2R �12 1

(0,1) p01 p01 = w01p �2p �p12 11 01

R1

1�R1

Weighted averageb R R �R R2 2 1 1w � w � w12 11 01R �R R �2R �1 1�R1 2 2 1 1

a Under the assumption of mating symmetry, the conditional probability that parents have the given mating type,
given that their child is affected; that is .p = P[(M,P) = (i,j) or (j,i) d D]ij

b This weighted average equals the transmission rate.

on the relative risks R1 and R2 and on the distribution
of mating types in the sampled population. Three mating
types contribute information about transmissions from
heterozygous parents—namely, (1,2), (1,1), and (0,1).
Table 1 shows how to calculate the transmission rate as
a weighted average of mating-type–specific transmission
rates, in which the weights depend on the relative fre-
quencies of the mating types. If one assumes that the
variant allele confers some risk—that is, for someR ( 1c

c—then transmission rates will differ across mating types
(table 1). Only in the unlikely circumstance that R =2

will transmission rates for the three informative mat-2R1

ing types be the same. Now consider a structured pop-
ulation in which both the frequency of the variant allele
and the exposure prevalence differ among subpopula-
tions in such a way that, in the general population, ex-
posure is correlated with presence of the variant allele.
In this situation, weights based on the relative frequen-
cies of the mating types can differ between exposed and
unexposed triads. This difference in weights can induce
a difference in exposure-specific transmission rates even
when the risk parameters R1 and R2 are the same for
exposed and for unexposed individuals. In this way,
transmission rates from heterozygous parents to exposed
versus unexposed probands can differ even under the
no-interaction null hypothesis. (One can also concoct
scenarios in which interaction exists but transmission
rates to exposed and to unexposed probands are equal.)

As an example in which no interaction exists but
transmission rates are unequal, consider a population
that consists of two subpopulations each in Hardy-Wein-
berg equilibrium: one, in which the frequency of the
variant allele and the exposure frequency are each .9,
constitutes 50% of the population; and a second, in
which allele frequency and exposure prevalence are each
.1, makes up the remaining 50%. For each subpopu-
lation, assume that exposure does not affect risk and
that and (recessive, no in-R = R = 3 R = R = 1E2 U2 E1 U1

teraction). Also assume that both subpopulations have

the same background risk for unexposed individuals
without the variant allele. Then, among triads with ex-
posed probands, mating types (1,2), (1,1), and (0,1) oc-
cur in proportions .214, .020, and .013, respectively,
whereas, among triads with unexposed probands, they
occur in proportions .055, .041, and .223, respectively.
The resulting transmission rates are andt = .73 t =E U

. This difference has nothing whatsoever to do with.58
genotype-exposure interaction, but it will increase, be-
yond its nominal value, the type I error rate of the trans-
mission-based test of interaction. The genotype-expo-
sure correlation is crucial: if either exposure prevalence
or allele frequency were the same in both subpopula-
tions, eliminating the correlation, tE and tU would be
the same. This example shows that cannotH : t = t0 E U

be regarded as equivalent to the no-interaction null hy-
pothesis, for and 2, when a struc-H : R = R c = 10 Ec Uc

tured population is under study.
A second problem invalidates the method even when

population structure is benign: the test based on trans-
mission rates assumes that transmissions from hetero-
zygous parents are independent events, when, in general,
they are not. The dependency arises because triads are
ascertained conditional on the offspring’s being affected.
When both parents of a diseased child are heterozygous,
the probability that the mother transmitted the variant
allele, given that the father did, is whereasR /(R � R ),2 1 2

the probability that the mother transmitted the variant
allele, given that the father did not, is . TheseR /(R � 1)1 1

two probabilities differ, thus ruling out independence,
except in two special cases: first, when the variant allele
has no effect on risk itself and is not in linkage dise-
quilibrium with another susceptibility locus (i.e., R =2

); and, second, when . This nonindepen-2R = 1 R = R1 2 1

dence means that the test statistic will generally not have
a x2 distribution under the equal-transmission-rate null
hypothesis, nor will it have a noncentral x2 distribution
under alternatives, a fact that has not been fully appre-
ciated. Note the contrast to the TDT, in which, under
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its null hypothesis that the allele is unrelated to risk,
transmissions from heterozygous parents are indepen-
dent (although nonindependence can arise under alter-
native hypotheses and can render the noncentral x2 dis-
tribution inappropriate).

To illustrate how these two problems can affect the
type I error rate, we carried out simulation experiments,
using, in each, 10,000 replications of a study involving
1,000 case-parent triads. Simulations were programmed
in GAUSS (Aptech Systems). For the population men-
tioned earlier, in which transmission rates were unequal
under the no-interaction null hypothesis, the usual x2

test with nominal size .05 had an empirical type I error
rate of .474 with a simulation SE of .005. Thus, the two
problems together induced a dramatically larger-than-
nominal type I error rate in this example. Lack of in-
dependence alone can induce either a larger- or a smaller-
than-nominal significance level. For a population in
Hardy-Weinberg equilibrium, with allele frequency and
exposure prevalence each .5 and andR = R = 3E2 U2

as before, the empirical type I error rateR = R = 1,E1 U1

was .067 with SE .0025 for a x2 test with nominal size
.05. Retaining the same population characteristics ex-
cept that and repeating the simulation1R = R =E2 U2 3

yielded an empirical type I error rate of .036 with SE
.0019. Such effects on type I error rate arise in any anal-
yses of interaction that are based on the counting of
transmissions from heterozygous parents, including the
conditional logistic-regression approaches of Harley et
al. (1995) and Maestri et al. (1997). The magnitude of
such effects can change substantially with different sub-
population parameters, with different relative risk pa-
rameters, or with different numbers of triads per study.

Log-Linear–Modeling Approach

An alternative way to study genotype-exposure inter-
action by use of data from case-parent triads is to apply
likelihood-based methods to analyze conditional geno-
type distributions (Schaid 1999a; Witte et al. 1999).
With these methods, the unit of analysis is a triad rather
than an allele transmitted from a heterozygous parent.
Consequently, nonindependence of transmissions is not
an issue: so long as no triads have members in common
(i.e., a single diseased offspring per family), they will be
stochastically independent. The other problem facing in-
teraction tests based on transmissions—namely, differ-
ential weighting of mating types across exposures—is
also overcome by a properly formulated likelihood anal-
ysis based on triads. Here we extend the log-linear ap-
proach to incorporate genotype-exposure interaction.

Assuming no maternally mediated and no parent-of-
origin effects on risk, one can examine genetic effects
alone by fitting counts in the 10 (M,P,C) categories to
the following log-linear model (Weinberg et al. 1998;

Wilcox et al. 1998 [notation modified from the origi-
nal]):

( )ln N = m � b I � ln 2 I , (1)ic i c {C=c} {(M,P,C)=(1,1,1)}

where Nic denotes the expected number of triads with
and mating type i, where i ranges from 1 to 6 asC = c

(M,P) ranges over (2,2), (2,1), (2,0), (1,1), (1,0), and
(0,0), respectively. The mi are stratum parameters asso-
ciated with each mating type; are logarithmsb = ln Rc c

of the relative risk (relative penetrance) parameters as-
sociated with , relative to (so , by def-C = c C = 0 b = 00

inition); and the indicator function I{relation} takes the value
1 when the relation is true and 0 otherwise. The constant
ln2 added in the category, called an(M,P,C) = (1,1,1)
“offset” (no parameter is estimated for this term), en-
forces the Mendelian assumption that two heterozygous
parents are twice as likely to produce a heterozygous
child as to produce one with either two copies or no
copies of the variant allele. Model 1 fits eight parameters,
six mi and two bc, to 10 data categories. One could re-
strict the model to only the informative mating
types—(2,1), (1,1), and (1,0)—and get exactly the same
inferences (Wilcox et al. 1998), unless some parental
genotypes are missing (then, all six mating types are
needed [Weinberg 1999a]). On the basis of this model,
one can carry out a likelihood-ratio test (LRT) of

(i.e., no genetic effects), using standardH : b = b = 00 1 2

software for log-linear models. This 2-df x2 test has
power that exceeds that of the TDT under either dom-
inant or recessive modes of inheritance (Weinberg et al.
1998; Schaid 1999b) and, like the TDT, is robust against
population stratification and admixture. The score test
described by Schaid and Sommer (1993) is equivalent
to the LRT only in large samples, but results are often
close in practice (Weinberg et al. 1998). Estimates and
SEs from model 1 are identical to those obtained from
a conditional-likelihood approach (Self et al. 1991) or
from the condition-on-parental-genotypes approach
(Schaid and Sommer 1993) and are readily obtained by
use of widely available statistical software.

One can envision fitting model 1 separately to triads
with exposed probands and to triads with unexposed
probands. A more convenient approach is to formulate
a single 16-parameter log-linear model for all 20 (M, P,
C, E) categories simultaneously that is equivalent to fit-
ting model 1 separately to each exposure group. Re-
stricting attention to only informative mating types
would yield exactly the same inferences, unless some
parental genotype data are missing. The encompassing
model can be parameterized as
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ln N = m � d I � b Iice i i {E=1} c {C=c}

�h I I � ln (2)I , (2)c {C=c} {E=1} {(M,P,C)=(1,1,1)}

where Nice denotes the expected number of triads with
(as described above), and . Here,(M,P) = i C = c, E = e

the mi are stratum parameters that correspond to the
mating-type parameters of model 1 applied to unex-
posed triads; the are the corresponding stratumm � di i

parameters for exposed triads. The bc are logarithms of
the relative risk associated with among the unex-C = c
posed triads and correspond to the log relative risks that
would be estimated by applying model 1 to unexposed
triads only; the are the corresponding log relativeb � hc c

risks for exposed triads. (Here, by definition,b = h = 00 0

since relative risks are compared with risks at .)C = 0
Consequently, the hc estimate the two genotype-exposure
interaction effects of interest.

To test the no-interaction null hypothesis of interest,
, one calculates a 2-df LRT statistic asH : h = h = 00 1 2

twice the difference, in log likelihoods, between model
2 and a reduced version of model 2 in which all hc are
set to 0. This test statistic has approximately a x2 dis-
tribution under the null hypothesis and is equivalent to
a test based on a conditional likelihood whose power
has been studied by Schaid (1999a).

We have parameterized model 2 under a general ge-
netic-risk model that allows four separate relative risks,
depending on the number of copies of the variant allele
and on the exposure. Model 2 can easily be tailored to
accommodate specific genetic models. For a recessive
model, b1 and h1 are eliminated, allowing genetic and
interaction effects for two copies of the variant allele
only. For a dominant model, replace the four terms for
genetic and interaction effects with two terms—namely,

; for the multiplicative model, inbI � hI I{C�1} {C�1} {E=1}

which replace the same four terms, instead, by2R = R ,2 1

. For these alternative genetic models, thebC � hCI{E=1}

LRT for interaction has only 1 df and focuses on specific
aspects of interaction defined by the genetic model.
Model 2 can accommodate triads with one or two mis-
sing parents, by adapting the methods of Weinberg
(1999a).

The di parameters are important. By allowing exposed
and unexposed triads different sets of stratum param-
eters through the di, model 2 properly accommodates
the possibility of differential weighting, of mating types,
between exposure levels, the problem that we identi-
fied earlier as afflicting transmission-based tests of
interaction.

Generalizing model 2 from a two-level to a multilev-
el exposure involves replacing single terms involving

with multiple terms involving for each non-I I ,{E=1} {E=e}

zero exposure level e and introducing additional param-
eters to accommodate additional exposure levels—

namely separate stratum parameters (die with ford = 0i0

each i, by definition) and separate interaction parameters
(hec with for each c and for each e, byh = 0 h = 00c e0

definition).
The log-linear–modeling approach outlined above is

flexible and is conveniently implemented with widely
available software for Poisson regression (e.g., SAS or
GLIM). Moreover, it overcomes the two problems that
invalidated the approach based on comparison of trans-
missions. For example, simulations that use the same
data that showed an empirical type I error rate of .474
for the transmission-based x2 test showed an empirical
error rate of .049 (SE .002) when using model 2 to test
for interaction.

Limitations on Usefulness

If the assumptions underlying valid statistical analysis
of case-parent designs do not hold for the candidate gene
under study, results of case-parent analyses, whether via
log-linear models or via any other method proposed for
case-parent data, can be misleading or biased. We con-
sider those assumptions now.

The Mendelian Assumption

Every method for the analysis of case-parent triad data
relies on the fundamental assumption that, for each pa-
rental mating type, offspring genotypes in the population
follow Mendelian proportions at the ages when pro-
bands come under study. With case-parent data, genetic
effects are assessed on the basis of whether observed data
deviate systematically from what is expected under this
Mendelian assumption (Spielman and Ewens 1996). The
transmission rate of .5, the TDT’s null hypothesis, is
derived under the assumption of Mendelian proportions,
and the null values of the log-linear model rely on them
too. For example, children from mating type (1,1) with
2, 1, or 0 copies of the variant allele are expected to
occur in the ratio 1:2:1 in the population at large. These
same ratios should occur in case-parent triads when the
allele is unrelated to the disease. Observing 50, 100, and
25 triads in mating type (1,1) with 2, 1, and 0 copies
of the variant allele, respectively, one would interpret
the strong deviation from expected ratios as favoring a
genetic effect on disease risk. Model 1 fitted to these
data estimates both R1 and R2 as 2. These estimates
depend explicitly on the assumed Mendelian ratios in
the following sense: if one knew that individuals without
the variant allele were half as likely to survive to the age
for study as were carriers of that allele, the appropriate
ratio would be 2:4:1, and, for that ratio, the data fully
support . Assessing both genetic effects andR = R = 02 1

genotype-exposure interaction requires that this funda-
mental Mendelian assumption holds separately for off-
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Table 2

Examples Illustrating Effects of the Conditional Independence
Assumption on Estimates and on Fit of Model 2 When Exposure
Has No Effect on Risk

PARENTAL

MATING TYPE

AND NO. OF

COPIES OF

VARIANT

ALLELE IN

OFFSPRING

When Conditional
Independence Holds

When Child’s
Genotype Modifies

Probability of
Exposurea

E = 1 E = 0 E = 1 E = 0

Approximate Expected Count

(1,2):
2 25 30 49 6
1 25 30 31 24

(1,1):
2 15 25 34 6
1 30 49 41 38
0 15 25 15 25

(0,1):
1 49 126 79 96
0 49 126 49 126

Estimated R1

1.00 1.00 1.55 0.76

Estimated R2

1.00 1.00 2.47 0.22

P Value for Test of Genotype-Exposure
Interactionb

1.00 10�9

P Value for Test of Fitc

1.00 .99

NOTE.—Illustrative data are approximate expected counts if a ran-
dom sample of 1,000 case-parent triads were taken from the structured
population described in the text.

a Description of dependence in text.
b 2-df LRT of in model 2.H : h = h = 00 1 2
c 4-df LRT of fit to model 2.

spring genotypes at each exposure level; interaction is
inferred when the pattern of deviations from assumed
proportions differs between exposure levels.

Deviations from the Mendelian standard can occur
(Sherman 1997). Whereas deviations due to asymmetries
in gametogenesis, gamete viability, or zygote formation
may be rare, those due to differential survival may be
more common. For example, certain genotypes may de-
crease the likelihood of a fetus surviving to birth, dis-
torting away from Mendelian proportions the genotype
distribution in living offspring (Tsai et al. 1998). When-
ever non-Mendelian transition ratios are the appropriate
reference values, tests and estimates based on assumed
Mendelian ratios will be biased—whether based on allele
transmissions, such as in the case of the TDT, or on
genotype distributions within parental mating types.

The Conditional Independence Assumption

Examination of genotype-exposure interactions by
use of case-parent data relies on the additional assump-
tion that, conditional on the parents’ genotypes, an in-
dividual’ s exposure status is independent of his or her
genotype at the candidate locus. Formally, this condi-
tional independence assumption can be expressed as

. Appendix A explainsP(C,EFM,P) = P(CFM,P)P (EFM,P)
mathematically why this assumption is needed.

One way that conditional independence could fail is
if the variant allele itself—or a variant at a linked lo-
cus—directly influences a person’s propensity for ex-
posure, by affecting that person’s appetite or aversion.
One example involves alcohol exposure and a variant
of the aldehyde dehydrogenase gene, ALDH2, one of
several loci involved in the detoxification of alcohol (En-
omoto et al. 1991; Shen et al. 1997; Chen et al. 1998).
One variant at this locus, ALDH2*2, encodes a protein
that converts acetaldehyde to acetate more slowly than
do the protein products of other alleles. Carriers of this
variant allele tend to avoid alcohol, because a buildup
of acetaldehyde after drinking causes discomfort and a
flushing reaction.

To see that such situations can distort inferences from
case-parent data, consider the artificial data in table 2.
These data are expected counts from a population com-
posed of two subpopulations, each in Hardy-Weinberg
equilibrium: one, with exposure prevalence and allele
frequency each equal to .5, makes up 75% of the pop-
ulation; a second, with exposure prevalence and allele
frequency each equal to .2, makes up the remaining
25%. The risk of disease among unexposed individuals
without the variant allele who are in the second sub-
population is five times that in the first. In both sub-
populations, exposure has no effect on risk itself and

whether a person is exposed or not. WhenR = R = 12 1

conditional independence holds, exposure prevalence is

.5 and .2 in each subpopulation, respectively. When con-
ditional independence fails, exposure prevalences are .5,
.6, or .9 and .2, .4, or .8, as C is 0, 1, or 2, in each
subpopulation, respectively. When the conditional in-
dependence holds, model 2 correctly finds no evidence
of either genetic effects or genotype-exposure interac-
tions ( at both exposure levels). When theR = R = 12 1

variant allele predisposes carriers to exposure, however,
the same analysis wrongly indicates genetic effects within
each exposure group ( for and 2 at eitherR ( 1 c = 1c

exposure level) and highly significant genotype-exposure
interaction ( for and 2). In this latter case,R ( R c = 1Uc Ec

the variant allele appears to be beneficial among the
unexposed but harmful among the exposed. Confronted
with such a pattern, an investigator might discount it as
biologically problematic or, alternatively, attempt to bol-
ster it by appealing to some hypothetical but plausible
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Table 3

General, Nondetectable, and Mendelian Transition Ratios for
Informative Mating Types

PARENTAL

MATING TYPE

AND COPIES

OF VARIANT

ALLELE IN

OFFSPRING

TRANSITION RATIOa

General Nondetectableb Mendelian

(1,2):
2 g1 s/r 1
1 1 1 1

(1,1):
2 g2 s 1
1 2g3 2r 2
0 1 1 1

(0,1):
1 g4 r 1
0 1 1 1

a where c* denotes the fewest copies∗P(C = c d M,P)/P(C = c d M,P),
of the variant allele possible for an offspring from a given parental
mating type.

b Non-Mendelian transition ratios of this form are not detectable
as lack of fit to model 1; s and r are arbitrarily positive constants.

mechanism. In general, a pattern in which an allele con-
fers risk among the exposed but reduces risk among the
unexposed (or vice versa) should raise the suspicion that
the allele under study may influence exposure.

How do biases such as those seen in table 2 arise?
Suppose that the variant allele and the exposure have
no effect on risk. Then, the Mendelian assumption
and the conditional independence assumption together
imply that Mendelian transition probabilities hold at
each exposure level. Thus, the log-linear analysis, like
other comparable likelihood-based analyses, assesses
genotypic effects on risk at each exposure level in com-
parison with the Mendelian proportions. This compar-
ison is appropriate when both key assumptions hold.
When the Mendelian assumption holds but conditional
independence does not, the comparison is no longer ap-
propriate. Suppose that conditional independence fails
so that those individuals in each mating type who have
more copies of the variant allele have increased proba-
bility of exposure, compared with those with fewer cop-
ies. In that situation, exposed probands carrying the var-
iant allele will be overrepresented in each mating type,
compared with Mendelian proportions: corresponding
unexposed probands will be underrepresented. These
distortions in conditional genotype distributions prop-
erly reflect the genotype’s influence on exposure, but they
contradict the Mendelian transition probabilities at each
exposure level, leading to the bias seen in table 2. Biases
would be in the opposite directions if the variant allele
lowered the probability of exposure. The same mecha-
nism would also operate when genetic effects or geno-
type-exposure interactions did exist, and this would bias
inferences in that setting as well.

Exposure Effects

For the study of the joint effects of genotype and ex-
posure on disease risk, case-parent designs can test or
estimate genetic effects and genotype-exposure interac-
tion effects, but they cannot evaluate exposure effects.
The reason is simple: the data provide no reference val-
ues against which to assess how exposure alone may
affect disease risk. If one were willing, however, to as-
sume some defensible reference values, then exposure
effects could, in principle, be examined with case-parent
data, by use of log-linear models. For example, suppose
that one viewed sex as a binary “exposure” of interest
and was willing to assume a 51:49 male:female sex ratio
throughout the population (i.e., in every subpopulation);
this effect of sex on disease risk could be studied, pro-
vided that all other needed assumptions were satisfied.
For this estimation to be valid in stratified populations,
the exposure prevalence must be the same in every sub-
population (although allele frequencies may differ). To
conduct this analysis, model 2 must be modified by re-

placement of the original six di parameters by a single d

parameter, measuring the exposure effect, and inclusion
of an additional offset (denoted q), to become

ln N = m � dI � b I � h I Iice i {E=1} c {C=c} c {C=c} {E=1}

� qI � ln (2)I .{E=1} {(M,P,C)=(1,1,1)}

Here, q is set to the natural logarithm of the assumed
ratio of exposed to unexposed individuals in the pop-
ulation at large (i.e., the natural logarithm of the odds
of exposure). For the example, when males are consid-
ered as exposed, q would be set to ln (51/49).

Detection of Violations of Needed Assumptions

Might the data themselves provide evidence of vio-
lated assumptions? Because models 1 and 2 have fewer
parameters than (M, P, C) categories, 2- or 4-df (x2) LRTs
of fit can be constructed for models 1 or 2, respectively,
by comparing the fitted model with one that has a sep-
arate parameter for each data category.

For the moment, ignore exposure. General transition
ratios for the informative mating types can be para-
meterized as indicated in table 3, by use of four values
that we denote collectively by vector . Ing = (g ,g ,g ,g )1 2 3 4

particular, corresponds to the Mendeliang = (1,1,1,1)M

assumption. Because genetic effects are assessed through
certain departures from the Mendelian transition ratios,
testing the fit to model 1 can detect only departures that
differ from those that the model interprets as genetic
effects. Non-Mendelian transition ratios with the form



258 Am. J. Hum. Genet. 66:251–261, 2000

where r and s are arbitrary positive con-g = (s/r,s,r,r),0

stants (table 3), would not register as lack of fit but,
rather, as spurious genetic effects, since the mathematical
form is exactly that induced by R1 and R2. On the other
hand, if g differed in form from g0, then the non-Men-
delian ratios might show up as both lack of fit and spu-
rious genetic effects.

Any deviations from the Mendelian assumption that
are caused by differential survival among genotypes may,
unfortunately, be close in form to g0. If heterozygote or
homozygote carriers of the variant allele exhibit in-
creased or decreased survival relative to homozygotes
without the variant allele, then they would likely exhibit
similar relative changes regardless of mating type, ap-
proximately in accord with g0. Consequently, testing the
fit of model 1 will, in practice, likely have little power
against deviations from the Mendelian assumption.

Testing the fit to model 2 can detect certain departures
from either the Mendelian or the conditional indepen-
dence assumption. However, these tests suffer the short-
comings already mentioned: for theoretical reasons,
some kinds of departures can never be detected; and, for
practical reasons, the kinds of departures that seem likely
to occur in actual populations are close to the theoret-
ically undetectable forms. If the variant allele increases
the probability of exposure, then the effects are likely
to be similar across mating types. Even without genetic
effects on risk, the resulting distribution of offspring ge-
notypes across mating types may have a form close to
g0. When exposed and unexposed groups are studied
separately, however, the mating-type–specific offspring
distributions in each group will be distorted away from
their pooled distribution—but not in a way that registers
strongly as lack of fit. The example in table 2 illustrates
that even strong departure from conditional indepen-
dence can be virtually undetectable.

Although the Mendelian assumption is crucial to
the testing for genetic effects, it is, interestingly, less cru-
cial to the testing for genotype-exposure interaction.
Model 2 can be modified to include parameters for the
vector g, by replacing the two genetic effect terms

by the following four terms:b I g I �c {C=c} 1 {(M,P,C)=(1,2,2)}

. Theseg I � g I � g I2 {(M,P,C)=(1,1,2)} 3 {(M,P,C)=(1,1,1)} 4 {(M,P,C)=(0,1,1)}

new parameters relax the Mendelian assumption by es-
timating the transition ratios fused with genetic effects,
so the latter cannot be tested separately. The interaction
parameters, however, can still be estimated, and hy-
potheses involving them can be tested. Moreover, the
results for interaction are free of any bias due to non-
Mendelian transition ratios, so long as the conditional
independence assumption holds and the same vector g
applies throughout the population.

Discussion

A strength of the case-parent design is its robustness
to hidden genetic population structure in studies that
focus on genetic risk. By using the parents, one can min-
imize errors of inference that arise from genetic popu-
lation structure, either population stratification or ad-
mixture, and that could afflict a case-control study. In
addition, parents may be more willing to participate than
are randomly selected controls. The principal assump-
tion required for the validity of such analysis is that, for
each parental mating type, offspring genotypes follow
Mendelian proportions at the ages when probands come
under study. Because of the strong belief that this
assumption should hold to a close approximation in a
variety of circumstances, the method seems to be widely
applicable when disease onset is early enough for cases
to have living parents.

When exposure comes into consideration, robustness
against population structure is no longer guaranteed. We
have shown that a correlation between allele frequency
and exposure prevalence can produce a difference in
transmission rates from heterozygous parents to exposed
versus unexposed probands even when genotype-expo-
sure interaction does not exist. Analysis using model 2
successfully overcomes this problem. We have also
pointed out that, if a proband’s genotype influences his
or her probability of exposure, then case-parent data
can yield spurious conclusions about genotype-exposure
interaction, regardless of the analytic method used. Con-
sequently, whether a particular candidate gene can be
safely assumed to have no influence on exposure is some-
thing that investigators will have to carefully weigh. On
the other hand, when the two key assumptions do hold,
exposure effects on risk (although not estimable them-
selves) will not bias tests or estimates of genetic and
interaction effects under either model 1 or model 2.

Our finding that transmission-based tests of interac-
tion are invalid also invalidates many apparently
straightforward analyses done to assess differences in
genetic risk between subcategories of the population.
Questions about possible ethnic or sex differences in
genetic risk or about differences in genetic effects among
subcategories of disease are questions about gene-by-
category interactions. Testing such hypotheses by com-
paring the transmission rates across groups is not valid,
for the same reasons that testing the genotype-exposure
interactions that way is not. The ubiquitous problems
are that transmissions are not independent in general
when both parents are heterozygous and that the equal-
transmission-rate null hypothesis differs from the no-
interaction null hypothesis. For example, if the popu-
lation consists of subpopulations in which allele fre-
quency is correlated with the risk of severe disease, then
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transmission rates can differ between disease subcate-
gories when the effect of the variant allele on disease
risk is the same for each disease category. The same thing
could occur if the categories were ethnic groups that
differed in allele frequency even if each group were in
Hardy-Weinberg equilibrium.

Although case-parent designs are often portrayed in
terms of parents providing well-matched genetic con-
trols, from another viewpoint, the parents do not ex-
plicitly supply “control” information—that is, reference
values against which deviations from the null hypothesis
are measured. Instead, parents’ genotypes provide the
ability to stratify triads by mating type. After stratifi-
cation, reference values are actually provided by the
Mendelian assumption. Similarly, Mendelian ratios at
each exposure level provide no-interaction reference val-
ues. The assumption that genotype does not influence
exposure is crucial because, without it, Mendelian ratios
would not be appropriate reference values for estimation
of genetic effects at each exposure level, even when the
Mendelian assumption held overall. Fully relaxing the
Mendelian assumption is possible, however: one can still
estimate or test genotype-exposure interactions but must
forgo any other inferences about exposure-specific ge-
netic effects.

Checking crucial assumptions by use of the data under
analysis is a useful goal. Although fully checking the
Mendelian assumption requires data beyond those con-
tributed by case-parent triads—perhaps from unaffected
siblings (Spielman et al. 1993)—and because the same
holds for conditional independence, we had thought that
certain egregious departures from assumptions might be
detected as lack of fit to the log-linear models. Our anal-
ysis suggested that situations so flagrant as to register
as statistically significant lack of fit are likely to be rare
in practice. Still, routine examination of model fit could
provide warnings of some unforeseen problems.

Case-parent designs are useful for the study of genetic
and genotype–exposure interaction effects on disease
when appropriate methods are used for analysis. Al-
though certain assumptions must be satisfied, we expect
that, in a great many circumstances, both the Mendelian
assumption and the conditional independence assump-
tion will hold to a close approximation. When hidden
population structure is absent, the power and efficiency
properties that case-parent designs have for the study of
interaction compare favorably with—and can even ex-
ceed—those of case-control designs (Schaid 1999a;
Witte et al. 1999). When hidden population structure is
present, case-parent designs are more robust than case-
control designs. Although case-parent designs can yield
spurious inferences when the variant allele under study
influences exposure, for many kinds of hidden popula-
tion structure involving exposure and genotype, case-

parent designs can provide correct inferences when case-
control designs would not. On the other hand, the
general inability of case-parent designs to provide any
information about the effects of exposure, per se, limits
the biological insight that they can provide. Seeing an
exposure that was neutral in the absence of the variant
allele and deleterious in its presence might suggest a bi-
ological mechanism different than that expected if the
exposure were beneficial in its absence and neutral in its
presence; by precluding the estimation of exposure ef-
fects, case-parent designs can never discriminate those
two distinct possibilities, whereas case-control designs
can.

Analyzing the case-parent triad data via log-linear
models provides a useful approach to the study of genetic
and genotype-exposure–interaction effects on disease
risk. The principal restriction is that disease onset must
occur early enough that parents of cases are common-
ly available for genotyping. The two critical assump-
tions that we have discussed are likely to be satisfied in
many situations. Most important, likelihood-based ap-
proaches such as this one overcome difficulties that in-
validate transmission-based approaches to the assess-
ment of genotype-exposure interaction.

Acknowledgments

The authors would like to thank Drs. Allen Wilcox and
Norman Kaplan for their helpful comments on earlier drafts
of this article.

Appendix A

Rationale for the Conditional Independence
Assumption

To examine why the conditional independence as-
sumption is required for model 2, we consider first the
probabilistic structure of model 1 and then show how
taking account of exposure changes that structure. In a
random sample of N triads in which the child is affected,
one expects to see triads, where theN # P(M,P,C d D)
parental mating type is (M,P) and the child has C copies
of the variant allele. Here, denotes the con-P(M,P,C d D)
ditional probability of a triad with allele counts (M,P,C)
given that the offspring is a case. Using Bayes’s theorem,

N # P(M,P,C d D)

= N # P(D d M,P,C) # P(M,P,C)/P(D) . (A1)

In addition to offspring genotype, mightP(D d M,P,C)
depend on parental mating type. The latter dependence
could arise if the locus under study were in linkage with
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the actual susceptibility locus, so that the susceptibility
allele could be transmitted without simultaneous trans-
mission of the allele under study. Alternatively, if the
locus under study is the susceptibility locus itself, then
dependence on parental genotype might arise through
maternal or imprinting effects. Finally, hidden popula-
tion structure could induce a dependence of risk on pa-
rental mating type. Here, we restrict attention to a sus-
ceptibility locus and express as a productP (D d M,P,C)
of Rc and a factor that depends on (M,P) alone—that
is, where . This represen-P(D d M,P,C) = R S , R = 1c MP 0

tation embodies the common assumption that the num-
ber of copies of the variant allele that a child carries
contributes to risk equally regardless of parental mating
type. When this assumption is used and P(M,P,C) is reex-
pressed as equation (A1) becomesP(C d M,P) # P(M,P),

N # P(M,P,C, d D)

= NR S # P(C d M,P) # P(M,P)/P(D) .c MP

Further manipulation yields

P(C d M,P)
N # P(M,P,C, d D) = R #c ∗P(C d M,P)

∗P(M,P) # S # P(C d M,P) # NMP# . (A2)
P(D)

Here, C* is the fewest copies of the variant allele that
an offspring from a particular parental mating type may
have. The first factor on the right-hand side of the equa-
tion is the relative risk of disease for a child with C
copies of the variant allele, compared with one with no
copies; the second factor is the transition ratio from table
3; the third factor is a nuisance parameter that varies
only with the mating type in a given study and is ac-
commodated via mating-type–specific stratum parame-
ters. Taking logarithms of both sides of equation (A2)
and specifying the log transition ratios as known offsets
yields model 1.

Consider next what happens when exposure is in-
cluded. What we will argue is that to achieve a form
analogous to equation (A2) requires an assumption that
the child’s genotype and exposure are conditionally in-
dependent given parental mating type. With exposure
included, the analogue of equation (A1) is

N # P(M,P,C,E d D)

= N # P(D d M,P,C,E) # P(M,P,C,E)/P(D) . (A3)

Besides child’s genotype and exposure, P(D d M,P,C,E)
might depend on parental mating type, through the same
mechanisms mentioned earlier, when exposure was ig-
nored. Here we generalize to more than two levels of

exposure, by allowing E to take values 0, 1, 2, ..., k
indicating exposure level. Again, we restrict attention to
a susceptibility locus and express as aP(D d M,P,C,E)
product of (i) REc, the relative risk associated with C
copies of the variant allele relative to no copies at ex-
posure level E, and (ii) a factor that depends on (M,P)
and E—namely, whereP(D d M,P,C,E) = R # S ,Ec MPE

for all values of E. In addition, one can expressR = 1E0

P(M,P,C,E) formally as

P(C,E d M,P)
P(M,P,C,E) = [ ]P(C d M,P) # P(E d M,P)

#P(C d M,P) # P(E d M,P) # P(M,P) ,

where the factor in square brackets—say, —mea-DEC dMP

sures the departures from stochastic independence of E
and C, given parental mating type ( when con-D = 1EC dMP

ditional independence holds). After substitution of these
results, further manipulation reexpresses equation (A3)
as

P(C d M,P)
N # P(M,P,C,E d D) = R #Ec ∗P(C d M,P)

K # P(M,P) # N # DMPE EC dMP# , (A4)
P(D)

where . In this∗K = S # P(E d M,P) # P(C d M,P)MPE MPE

representation, the first factor gives the relative risk; the
second factor is again the transition ratio; and, aside
from the third factor is a nuisance parameterD ,EC dMP

that depends on parental mating type and exposure
alone and is handled through stratum parameters that
are specific to combinations of exposure level and pa-
rental mating type. Thus, when , taking theD = 1EC dMP

logarithms of both sides of equation (A4) and specifying
the log transition ratios as known offsets yields model
2. When model 2 cannot correctly representD ( 1,ECdMP

the probabilistic structure given by equation (A4) and
is not valid for analysis of triad data. If the analyst could
specify appropriate values of (or some equivalentDEC dMP

measure of departure from independence), then model
2 could be modified with appropriate offsets to be valid
under that particular conditional dependence relation-
ship. Situations in which could be specified aDECdMP

priori are probably rare.
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